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ABSTRACT

A Generalized Network Formulation for the
analysis electromagnetic diffraction from a photonic
crystal is proposed. The Finite Element method is
employed to compute the impedance matrix which
characterizes propagation through the unit cell. From
this matrix, the bulk dispersion characteristic for the
infinitely extending crystal, as well as the transmission
and reflection coefficients for the case of a finite
thickness sample of the crystal can be derived.

INTRODUCTION

Three-dimensional periodic structures, often
referred to as photonic crystals borrowing the optics
jargon, have been recently proved to have interesting
characteristics, not yet available with the ordinary
materials. They may act on electromagnetic waves in
a similar way as natural crystals act on electron
waves. If properly designed, these artificial materials
can significantly changes electromagnetic waves
propagation: entire frequency bands can be forbidden,
and local modes can be trapped around local defects
into the crystal lattice [1].

Possible applications of photonic crystals in the
microwave and millimeter wave region of the
electromagnetic wave spectrum range from circuits to
antenna and stealth technology. For instance, they
could be used to realized single structure multi-
channel filters, low-loss guides for long antennas,
quieter oscillator, polarizers and housing for quasi-
optical applications, as well as to enhance planar
antenna performances and reduce aperture antennas
cross-talk. Some of these applications have indeed
already been investigated [2] proving the usefulness of
photonic crystals.

Much of the research in this area has been done
experimentally and the need for flexible and efficient
numerical tools is apparent. Only recently this aspect
has been addressed and some well established
methodology have been adapted to the periodic
geometry and applied to the analysis of photonic
crystals. Among these, the plane wave expansion
method [3] and the Finite Difference both in
Frequency Domain (FDFD) [4] and Time Domain
(FDTD) [5,6] have been applied.

The plane wave expansion method was
proposed first to compute the dispersion curve of
electromagnetic waves in photonic crystals. It
provides good results but may exhibits convergence
problems when there is a large contrast in the
dielectric constant values of the materials comprising
the structure and cannot deal with the presence of
conductors into the crystal. Although this limitation is
not so stringent at optical frequency where dielectric
materials are usually employed, this is not the case in
the microwave and millimeter frequency ranges, where
metallic and metallo-dielectric crystals with wide
band-gap have been reported [5,7].

The method proposed by Pendry [4] to analyze
this latter family of crystals, has proved effective.
Such method is based on the usage of the FDFD
algorithm to compute the transfer matrix through a
thin, with respect to wavelength, slab of the crystal,
assumed uniform along the direction of propagation.
The transfer matrix so computed can be used to
evaluate bulk dispersion as well as transmission and
reflection through a finite thickness slab of material.

FDTD is most useful to deal with transmission
through photonic crystals comprising non-linear
material[6], even though it can be computationally
demanding in the case of transmission through a thick
slab. FDTD application to computation of dispersion
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diagram is also feasible, but requires to accurately
chose the excitation to find all modes.

Finite Element Method (FEM) [8] has been also
applied to the analysis of bulk dispersion of photonic
crystals [9,10]. The method allows treating metal-
dielectric crystals and avoids the staircase
approximation of FD algorithms. However, the
formulation previously adopted was based on the
assumption of an infinitely extending three-
dimensional periodic structure and thus cannot deal
with transmission through a finite thickness crystal.

A new formulation is proposed here, in some
respect similar to that developed by Pendry [5], which
allows computing transmission and reflection through
a finite thickness sample of material as well as the
dispersion diagram of an infinitely extending crystal.
It makes use of  the FEM to evaluate the generalized
impedance matrix which relates the electric and
magnetic fields at two opposite sides of  a unit cell of
the crystal, in the hypothesis it  infinitely extends only
in two directions. Transmission through a finite
thickness crystal, built by staggering a certain number
of slabs, can be computed by cascading the impedance
matrices of each slab.

THE FINITE ELEMENT - GENERALIZED
NETWORK FORMULATION

Let us consider a thick planar structure extending
among the planes z= 0 and z d= , with two axes of
periodicity as sketched in Fig. 1. This can be thought
of as a slab of a three-dimensional periodic structure
which can be obtained by staggering an arbitrary
number of similar slabs into the z direction. Resorting
to the Bloch’s theorem, only a single cell Ω  of the
photonic crystal, delimited by the surface S , need to
be analyzed. The fields inside Ω  is expressed as:

[ ] [ ]E r H r E r H r k r( ), ( ) ( ), ( ) exp( )= − ⋅p p tj (1)

where k t  is the transverse (with respect to the z-axis)

propagation vector inside the material, and E rp ( ),

H rp ( ) are the periodic part of the electromagnetic

field, that is

[ ] [ ]E r R H r R E r H rp p p p( ), ( ) ( ), ( )+ + = (2)

Fig. 1 -  Geometry of a planar structure with
periodicity in two directions.

where the vector R  is a linear combination (with
integer coefficients) of the primitive vectors Duu ,

Dvνν  denoting the spatial periodicity of the crystal in

the plane x-y. Starting from the vector Helmholtz
equation and applying the weighted residual procedure
with W r W r k r( ) ( ) exp( )= − ⋅p tj  as vector

weighting functions, yields the weak form of the
vector Helmholtz equation

( ) ( )( ∇ + × ⋅ ∇ − × −−∫ j p j k qt p t pk W k E1
0
2

Ω

) ( )W E W H 1p p p p n
S S

d jk Z dS
T B

⋅ + × ⋅ =
∪
∫Ω 0 0 0 (3)

In equation (3), p r= µ  and q r= ε  if F Ep p= , or

p r= ε  and  q r= µ  if F Hp p= . ST  and SB  denotes

the top and bottom parts of the surface S delimiting
the unit cell. At opposite sides of the unit cell which
connects the cell analyzed with other cells of the
structure, all the quantities are equal, except for the
outward unit normal vector 1n , which is opposite.

Thus, contribution to the surface integral in the left
hand side of equation (3) coming from such surfaces
cancel out, and only contributions coming from the
top ( )z = 0  and bottom ( )z L= −  surfaces must be

computed. For sake of clarity, in the following we will
focus on the case and F Ep p= , p r= µ , q r= ε .  By

discretizing the unknown electric and magnetic fields
with finite elements it is possible to derive a matricial
relation between the electric and magnetic field
associated to the edges lying on the surfaces ST  and

SB .  Actually, all choices corresponding to different

0-7803-4603-6/97/$5.00 (c) IEEE



3

generalized network representations of the
electromagnetic wave propagation through the slab
are possible. For instance, by expressing the electric
field at the top and bottom surfaces (ET and EB ,

respectively) as a function of the magnetic field at the
same surfaces (H T and H B ), the generalized

impedance matrix for the propagation through the unit
cell is built:
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This matrix can be used to evaluate both the
dispersion relation of the photonic media and the
transmission through and reflection by a photonic
crystal of arbitrary thickness built by staggering a
certain number of slabs.

Reflection and Transmission Coefficients
When an arbitrarily polarized plane wave impinges
the slab coming from the half-space z> 0 as shown
in Fig. 1, from the definition of  impedance matrix and
the boundary conditions, the equations (4) become
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where the superscripts inc, r, and t denote the incident,
reflected, and transmitted fields, and the impedance
matrix is computed for values of frequency and
transverse propagation constant equal to those of the
incident field. Reflected and transmitted
electromagnetic fields may be expressed in terms of
Bloch’s waves with unknown amplitude coefficients

denoted by the column vectors E E H Hm
r

m
t

m
r

m
t, , , .

Maxwell’s equations in the homogeneous media above
and underneath the slab give the relation:
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To derive a matrix equation relating the unknown

amplitudes E E H Hm
r

m
t

m
r

m
t, , ,  to the incident field, is

necessary to introduce also the matrix P which

projects the Bloch’s functions onto the finite element
basis used to derive the generalized impedance matrix
of the slab. Then, introducing equation (6) into (5)
yields:
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which  can be solved for the unknown coefficient of
the reflected and scattered field from a photonic
crystal of finite thickness.

Dispersion Relation
Assuming an infinitely extending crystal,

comprised of identical slab of thickness L  staggered
into the z direction, and invoking the Bloch’s theorem,
the fields at z= 0 and  z L= − must be equal except
for the phase shift exp( )jk Lz . From the generalized

impedance matrix, we can derive the transmission
matrix and solve the standard eigenvalue problem:

A B
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to find the propagation constant in the z direction.

RESULTS

Some results relative to simple crystals are
shown next. Fig. 2 shows the gap in the transmission
coefficient of a TMz polarized incident wave through a
two-dimensional photonic crystal obtained by
staggering seven slabs comprised of a grating of
dielectric rods with ε r =2.98 radius r= 0.37mm and

period p=1.87mm. The slabs are staggered so as to
form a square lattice. The results compare within a
few percent with those presented in [11] and obtained
using a technique similar to that proposed by Pendry.
This simple two-dimensional structure exhibits a
sharp gap into the transmission coefficient in the
frequency range 0 322 0 4400. / .≤ ≤a λ .

Fig. 3 shows the dispersion diagram of the
lowest TMz polarized modes into a dielectric crystal
comprised of circular dielectric rods with ε r =8.9. The

rods are located on a square lattice and have a radius
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r= 0.2a with a lattice constant. For this configuration
and polarization, the forbidden range of  frequency
spans the values 0 322 0 4400. / .≤ ≤a λ . The

dispersion diagram has been obtained by selecting the
eigenvalue of equation (8) with unitary module. The
method still present some numerical difficulties related
to ill-conditioning of the generalized impedance matrix
and this issue is currently under investigation.
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Fig. 2. Transmission coefficient through seven slab of
dielectric rod gratings for a TMZ polarized incident
field. εr=2.98, r =0.37mm, a=1.87mm.
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Fig. 3. Dispersion relation for TMZ polarization in a
square lattice of dielectric circular rods with εr=8.9
and r/a=0.2.
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